让GAN再次伟大!拽一拽关键点就能让狮子张嘴&大象转身,汤晓鸥弟子的DragGAN爆火,网友:R.I.P. Photoshop
这两天,一段AI修图视频在国内外社交媒体上传疯了。
不仅直接蹿升B站关键词联想搜索第一,视频播放上百万,微博推特也是火得一塌糊涂,转发者纷纷直呼“PS已死”。
怎么回事?
原来,现在P图真的只需要“轻轻点两下”,AI就能彻底理解你的想法!
小到竖起狗子的耳朵:
大到让整只狗子蹲下来,甚至让马岔开腿“跑跑步”,都只需要设置一个起始点和结束点,外加拽一拽就能搞定:
不止是动物的调整,连像汽车这样的“非生物”,也能一键拉升底座,甚至升级成“加长豪华车”:
这还只是AI修图的“基操”。
要是想对图像实现更精准的控制,只需画个圈给指定区域“涂白”,就能让狗子转个头看向你:
或是让照片中的小姐姐“眨眨眼”:
甚至是让狮子张大嘴,连牙齿都不需要作为素材放入,AI自动就能给它“安上”:
如此“有手就能做”的修图神器,来自一个MIT、谷歌、马普所等机构联手打造的DragGAN新模型,论文已入选SIGGRAPH2023。
没错,在扩散模型独领风骚的时代,竟然还能有人把GAN玩出新花样!
目前这个项目在GitHub上已经有5k Star,热度还在不断上涨中(尽管一行代码还没发)。
所以,DragGAN模型究竟长啥样?它又如何实现上述“神一般的操作”?
拽一拽关键点,就能修改图像细节
这个名叫DragGAN的模型,本质上是为各种GAN开发的一种交互式图像操作方法。
论文以StyleGAN2架构为基础,实现了点点鼠标、拽一拽关键点就能P图的效果。
具体而言,给定StyleGAN2生成的一张图像,用户只需要设置几个控制点(红点)和目标点(蓝点),以及圈出将要移动的区域(比如狗转头,就圈狗头)。
然后模型就将迭代执行运动监督和点跟踪这两个步骤,其中运动监督会驱动红色的控制点向蓝色的目标点移动,点跟踪则用于更新控制点来跟踪图像中的被修改对象。
这个过程一直持续到控制点到达它们对应的目标点。
不错,运动监督和点跟踪就是我们今天要讲的重点,它是DragGAN模型中最主要的两个组件。
先说运动监督。在此之前,业界还没有太多关于如何监督GAN生成图像的点运动的研究。
在这项研究中,作者提出了一种不依赖于任何额外神经网络的运动监督损失(loss)。
其关键思想是,生成器的中间特征具有很强的鉴别能力,因此一个简单的损失就足以监督运动。
所以,DragGAN的运动监督是通过生成器特征图上的偏移补丁损失(shifted patch loss)来实现的。
如下图所示,要移动控制点p到目标点t,就要监督p点周围的一小块patch(红圈)向前移动的一小步(蓝圈)。
再看点跟踪。
先前的运动监督会产生一个新的latent code、一个新特征图和新图像。
由于运动监督步骤不容易提供控制点的精确新位置,因此我们的目标是更新每个手柄点p使其跟踪上对象上的对应点。
此前,点跟踪通常通过光流估计模型或粒子视频方法实现。
但同样,这些额外的模型可能会严重影响效率,并且在GAN模型中存在伪影的情况下可能使模型遭受累积误差。
因此,作者提供了一种新方法,该方法通过最近邻检索在相同的特征空间上进行点跟踪。
而这主要是因为GAN模型的判别特征可以很好地捕捉到密集对应关系。
基于这以上两大组件,DragGAN就能通过精确控制像素的位置,来操纵不同类别的对象完成姿势、形状、布局等方面的变形。
作者表示,由于这些变形都是在GAN学习的图像流形上进行的,它遵从底层的目标结构,因此面对一些复杂的任务(比如有遮挡),DragGAN也能产生逼真的输出。
单张3090几秒钟出图
所以,要实现几秒钟“精准控图”的效果,是否需要巨大的算力?
nonono。大部分情况下,每一步拖拽修图,单张RTX3090GPU在数秒钟内就能搞定。
具体到生成图像的效果上,实际评估(均方误差MSE、感知损失LPIPS)也超越了一系列类似的“AI修图”模型,包括RAFT和PIPs等等:
如果说文字的还不太直观,具体到视觉效果上就能感受到差异了:
值得一提的是,DragGAN的“潜力”还不止于此。
一方面,如果增加关键点的数量,还能实现更加精细的AI修图效果,用在人脸这类对修图要求比较严格的照片上,也是完全没问题:
另一方面,不止开头展示的人物和动物,放在汽车、细胞、风景和天气等不同类型的图像上,DragGAN也都能精修搞定。
除了不同的照片类型,从站到坐、从直立到跑步、从跨站到并腿站立这种姿势变动较大的图像,也能通过DragGAN实现:
也难怪网友会调侃“远古的PS段子成真”,把大象转个身这种甲方需求也能实现了。
不过,也有网友指出了DragGAN目前面临的一些问题。
例如,由于它是基于StyleGAN2生成的图像进行P图的,而后者训练成本很高,因此距离真正商业落地可能还有一段距离。
除此之外,在论文中提到的“单卡几秒钟修图”的效果,主要还是基于256×256分辨率图像:
至于模型是否能扩展到256×256以外图像,生成的效果又是如何,都还是未知数。
有网友表示“至少高分辨率图像从生成时间来看,肯定还要更长”。
实际上手的效果究竟如何,我们可以等6月论文代码开源后,一测见真章。
团队介绍
DragGAN的作者一共6位,分别来自马克斯・普朗克计算机科学研究,萨尔布吕肯视觉计算、交互与AI研究中心,MIT,宾夕法尼亚大学和谷歌AR/VR部门。
其中包括两位华人:
一作潘新钢,他本科毕业于清华大学(2016年),博士毕业于香港中文大学(2021年),师从汤晓鸥教授。
现在是马普计算机科学研究所的博士后,今年6月,他将进入南洋理工大学担任助理教授(正在招收博士学生)。
另一位是Liu Lingjie,香港大学博士毕业(2019年),后在马普信息学研究所做博士后研究,现在是宾夕法尼亚大学助理教授(也在招学生),领导该校计算机图形实验室,也是通用机器人、自动化、传感与感知 (GRASP)实验室成员。
值得一提的是,为了展示DragGAN的可控性,一作还亲自上阵,演示了生发、瘦脸和露齿笑的三连P图效果:
是时候给自己的主页照片“修修图”了(手动狗头)。
论文地址:
https://vcai.mpi-inf.mpg.de/projects/DragGAN/data/paper.pdf
项目地址(代码6月开源):
https://github.com/XingangPan/DragGAN
参考链接:
[1]https://weibo.com/1727858283/N1iKl4zVG
[2]https://twitter.com/_akhaliq/status/1659424744490377217
[3]https://twitter.com/mrgreen/status/1659482594516377601
—完—
淘宝店播大爆发,已有4000家GMV破千万
淘宝商家店播的机会来了“如今的淘系直播对很多商家来说不再是渠道运营,它是一个全新的具有超强爆发力的品牌竞争力以及生意爆发的加速器。”淘天集团阿里妈妈市场部总经理穆尔指出。9月6日举办的2023阿里妈妈m峰会披露,今年以来,淘系已经形成了店铺、直播和内容三大中心,这三大中心为品牌实现全年生意的多频爆发。而这三者的协同、融合,已然成为了商家获取增量的关键。站长网2023-10-13 16:13:100000亚马逊开发名为Rufus的AI购物助手,帮用户购物
划重点:-亚马逊推出了名为Rufus的AI购物助手,它可以帮助用户进行购物决策-Rufus通过对亚马逊产品库、用户评价和网页信息的学习,可以回答用户关于产品的问题、提供比较和建议等-Rufus目前还处于测试阶段,将先面向部分用户,未来几周将扩大用户范围站长网2024-02-02 10:21:370000AI搜索之战:谁在成为中国的Perplexity
又一个AI融资明星出现。当科技圈还在等待GPT5的发布,投资圈已经对一款大模型应用热情起来。目前,AI搜索引擎初创企业Perplexity正进行2.5亿美元的第四轮融资,此轮融资后,Perplexity的估值将达到30亿美元。而在今年1月,其估值还只有5亿美元。站长网2024-07-17 13:18:380000好莱坞演员寻求达成使用人工智能「数字替身」的新协议
好莱坞最大的工会将开始讨论人工智能时代的薪酬问题,作为与电影制片厂的合同谈判的一部分,讨论的议题是人类演员如何为其「数字替身」的工作获得报酬。对于人工智能的潜在破坏性可能性引发了好莱坞演艺人员的担忧,他们担心这项技术可能导致剧作家、配音演员等职位的岗位减少。演员们还担心失去对自己形象的控制,因为人工智能技术已被用于创建涉及基努·里维斯和汤姆·克鲁斯等演员形象的「深度伪造」视频。站长网2023-06-07 20:02:460000网易:第一季度营收269亿元 同比增长 7.2%
网易今日发布了其截至2024年3月31日的第一季度财务报告,数据显示公司净营收达到了269亿元,同比实现了7.2%的稳健增长。在净利润方面,公司实现了76亿元,与上一季度的66亿元和上年同期的68亿元相比,呈现出稳定的增长态势。若不计入美国通用会计准则,净利润更是达到了85亿元,高于上一季度的74亿元和上年同期的76亿元。站长网2024-05-24 10:42:470000