参数小,性能强!开源多模态模型—TinyGPT-V
安徽工程大学、南洋理工大学和理海大学的研究人员开源了多模态大模型——TinyGPT-V。
TinyGPT-V以微软开源的Phi-2作为基础大语言模型,同时使用了视觉模型EVA实现多模态能力。尽管TinyGPT-V只有28亿参数,但其性能可以媲美上百亿参数的模型。
此外,TinyGPT-V训练只需要24G GPU就能完成,不需要A100、H100那些高端显卡来训练。
所以,非常适用于中小型企业和个人开发者,同时可以部署在手机、笔记本等移动设备上。
开源地址:https://github.com/DLYuanGod/TinyGPT-V
论文地址:https://arxiv.org/abs/2312.16862
TinyGPT-V主要架构
TinyGPT-V主要由大语言模型Phi-2、视觉编码器和线性投影层三大块组成。
开发人员选择了微软最新开源的Phi-2,作为TinyGPT-V的基础大语言模型。Phi-2只有27亿参数,但理解和推理能力非常强,在多项复杂基准测试中体现出与大130亿参数模型接近或者超过的效果。
视觉编码器采用了与MiniGPT-v2相同的架构,基于ViT的EVA模型。这是一个预训练好的视觉基础模型,在整个TinyGPT-V的训练过程中保持冻结状态。
线性投影层的作用则是,将视觉编码器提取的图像特征嵌入到大语言模型中,使大语言模型能够理解图像信息。
TinyGPT-V中的第一层线性投影层采用了来自BLIP-2的Q-Former结构,这样可以最大程度复用BLIP-2的预训练成果。
第二层线性投影层用新的高斯分布初始化,目的是弥补前一层输出和语言模型嵌入层之间的维度差距。
TinyGPT-V训练流程
TinyGPT-V的训练经过了四个阶段,每个阶段所使用的数据集及实验流程各不相同。
第一阶段是热身训练,目的是使Phi-2模型适应图像模式的输入。这个阶段使用的训练数据包含Conceptual Caption、SBU和LAION三个数据集,总计约500万幅图像和对应的描述文本。
第二阶段进行预训练,目的是进一步减少图像文本对上的损失。这个阶段同样使用第一阶段的Conceptual Caption、SBU和LAION数据集。实验设置了4个阶段,每个阶段有5000个迭代。
第三阶段进行指令调优,使用MiniGPT-4和LLaVA的一些带指令的图像文本对进行模型训练,如“描述这张图片的内容”。
第四阶段进行多任务调优。这一阶段使用了更为复杂和丰富的多模态数据集,如LLaVA中复杂语义对齐的句子、Flickr30K中的物体解析数据集、多任务混合语料、纯文本语料等。
同时采用了与第二阶段类似的学习率策略,最终使得损失从2.720下降到了1.399。
为了测试TinyGPT-V的性能,研究人员从多个角度评估了在视觉问答、视空间推理、图片字幕生成等多个视觉语言任务上的表现。
结果显示,TinyGPT-V的参数很小,性能却非常强悍,例如,在VSR空间推理任务上,以53.2%的准确率,超过所有参与测试的模型。
本文素材来源TinyGPT-V论文,如有侵权请联系删除
GPTs正式上线!全民自定义ChatGPT助手时代来啦
11月10日,OpenAI联合创始人兼首席执行官SamAltman在社交平台宣布,自定义GPTs功能对所有ChatGPTPlus全面开放。自定义GPTs是OpenAI在开发者大会上推出的一项重磅功能,用户无需任何代码,全程支持可视化点击操作。站长网2023-11-10 09:24:550000小米14 Ultra即将发布 已开启线下盲订
小米14Ultra预计将在2024年龙年作为首款旗舰手机亮相,尽管小米方面尚未公布确切的发布日期,但根据多位博主和网友的反馈,部分小米门店已经开始接受这款手机的盲订。站长网2024-02-18 08:46:180000腾讯开源DiT 图像生成模型 可根据对话上下文生成并细化图像
腾讯开源了混元DiT图像生成模型,对英语和中文都有着精细的理解能力。Hunyuan-DiT能够进行多轮多模态对话,根据对话上下文生成并细化图像。站长网2024-05-14 16:13:570000国内百模谁第一?清华14大LLM最新评测报告出炉,GLM-4、文心4.0站在第一梯队
【新智元导读】大模型混战究竟谁才是实力选手?清华对国内外14个LLM做了最全面的综合能力测评,其中GPT-4、Cluade3是当之无愧的王牌,而在国内GLM-4、文心4.0已然闯入了第一梯队。在2023年的「百模大战」中,众多实践者推出了各类模型,这些模型有的是原创的,有的是针对开源模型进行微调的;有些是通用的,有些则是行业特定的。如何能合理地评价这些模型的能力,成为关键问题。站长网2024-04-19 18:24:330000