自己发基准自己第一,Anyscale行为惹社区吐槽
前一天发布 LLMPerf 排行榜,宣称要推动大型语言模型推理领域的发展,鼓励创新与超越。
第二天就收获 AI 社区的大量吐槽,原因是排行榜的「基准甚至没有得到很好的校准」。
这是 Anyscale 这家初创公司正在经历的事情。
Anyscale 是一家专注分布式计算领域的美国初创公司,虽然创立仅三年时间,但却收获了不少的关注。
首先就是 Anyscale 旗下开源项目 Ray 带来的光环。Ray 是一个开源的分布式计算框架,可以将 AI/ML 和 Python 的 workload 从单机拓展至多台计算机上,从而提高 workload 的运行效率,目前已经在 Github 上收获了两万多个 Star。带动了最新一波大模型热潮的 ChatGPT,也是基于 Ray 框架训练的。
还有一部分原因是创始团队的光环。这家初创公司的创始人之一、UC 伯克利教授 Ion Stoica 是市值310亿美元的数据巨头 Databricks 的联合创始人,他在十年前带领学生创立了 Databricks,收获了商业上的巨大成功。在2019年,他又一次做出了创业的决定 ——Anyscale 诞生了。公司创始团队中的 CEO Robert Nishihara 和 CTO Philipp Moritz ,也都是他在伯克利的学生。此外,伯克利教授 Michael I. Jordan 也参与了 Anyscale 的创业。
这些要素,都让人们在 Anyscale 身上看到了 Databricks 的影子,一些投资者将 Anyscale 描述为充满希望的「下一个 Databricks」
2021年12月,Anyscale 完成了1亿美元的 C 轮融资,估值达到10亿美元,投资者包括 a16z、Addition、NEA、Intel 等。今年8月,Addition 和 Intel 又共同牵头追加了新一轮9,900万美元投资。
这应该是一个前景光明的技术团队。而此次被吐槽事件的经过是这样的:
11月初,Anyscale 发布过一个开源大模型推理基准,叫做「LLMPerf」。这个基准是为了方便广大研究者评估 LLM API 性能。
三天前,Anyscale 在上述工作的基础上,推出了 LLMPerf 排行榜。
排行榜地址:https://github.com/ray-project/llmperf-leaderboard
Anyscale 称,他们已经利用 LLMPerf 对一些 LLM 推理提供商进行了基准测试,评估大模型性能、可靠性、效率的关键指标包括以下三点:
第一个 token 的时间(TTFT),表示 LLM 返回第一个 token 的持续时间。TTFT 对于聊天机器人等流媒体应用尤为重要。
token 间延迟:连续 token 之间的平均时间。
成功率:推理 API 在无错误的情况下成功响应的比例。由于服务器问题或超出速率限制,可能会出现失败,这反映了 API 的可靠性和稳定性。
但 Anyscale 晒出的这些测评结果引发了不小的争议,比如 TTFT 这一项指标,对于不同规模的模型,Anyscale 都是第一名。
70B Models:
13B Models:
7B Models:
后两项指标的测评结果中,Anyscale 也显示出「遥遥领先」的水准。
面对这么多优秀对手,Anyscale 真的能实现「吊打」吗?图中结果令人怀疑。
对此,PyTorch 创始人 Soumith Chintala 表示:「看到来自可靠来源的构建不佳的基准让我感到痛苦。我希望 Anyscale 能够解决问题,并在发布此类基准之前咨询其他利益相关者。如果我不是很了解 Anyscale,我会认为这是恶意行为。」
问题出在哪里呢?Soumith Chintala 认为,这个基准没有得到很好的校准,「它仅在很短的时间内展示了复杂问题的一个方面」。
至少,用户需要了解多个附加因素:1. 服务的每个 token 成本;2. 吞吐量,而不仅仅是延迟;3. 在一段时间内测量的可靠性、延迟和吞吐量,而不仅仅是突发可靠性,突发可靠性可能会根据一天中的时间而有很大变化。
此外,Anyscale 应该明确标记该基准是有偏见的,因为 Anyscale 正在管理它,或者向其他利益相关者开放基准的设计和治理,即开放治理,而不仅仅是开源。试图制定和控制标准并不好。
「基准游戏」并不新鲜,曾经的数据库之战、大数据之战、机器学习框架之战都涉及到各种投机取巧的基准测试,仅仅为了更好地展示自己。
两位 AI 学者陈天奇和贾扬清也回忆起,那些年关于「基准游戏」的故事:
作为 LeptonAI 的创始人,贾扬清还分析了 Anyscale 发布的大模型推理排行榜为什么不够合理:
作为 AI 框架领域的资深人士,请允许我分享一个故事。在图像模式时代,每个人都想成为 「最快的框架」,为了让自己的速度快上2%,不惜牺牲很多其他因素。
有一个框架从来都不是最快的。猜猜它是什么?
这个框架的名字叫 PyTorch。直到今天,PyTorch 仍然不是最快的框架,这是我从同事 Soumith Chintala 身上学到的重要一课。这是一个有意识的选择,以确保不会过度优化单一(或少数)标准。
我为 Anyscale 制作基准测试而鼓掌,恕我直言,这是一个诚实、用心良苦的基准测试,却存在严重错误和不明确的参数。比如,在引擎盖下运行这些服务的是什么 GPU?
但是,既然性能比较不可避免,那我就把结果公布出来吧。
在 Anyscale 在10月份发布的一篇帖子中,曾对比过三家 API 的推理性能。贾扬清晒出了一张 Lepton API 与这三家 API 的对比图片:
基准数据来源:https://anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
「原始数据不是由 Anyscale 发布的,因此我们不得不在帖子中的原始图片上叠加图表。很抱歉把这些东西拼凑在一起。」贾扬清表示:「我们并不打算用它来衡量谁是最快的,只是想证明我们是名列前茅的。」
除了贾扬清,其他「被上榜」的 API 所属团队也提出了质疑。
比如 FireworksAI 联合创始人、CTO Dmytro Dzhulgakov:
TogetherAI 的 CEO 表示:「Anyscale 是为了清洗他们 API 糟糕性能进行的基准测试。」
多方质疑之下,Anyscale 的 CEO 亲自回应了基准的缺陷问题:
我同意你的很多反馈,我们将解决它!
一些具体的事情:
我们将添加成本作为一个指标(这非常重要)。
我们将随着时间的推移测量延迟和可靠性。正如您提到的,这些事情根据一天中的时间而变化。
关于吞吐量,此处的预期范围是对 API 端点产品进行基准测试(而不是 LLM 推理引擎)。每个副本的吞吐量不是一个面向用户的概念,我们可以在不访问内部的情况下进行基准测试。吞吐量非常重要,但这是一种不同的设置。
我们的目的是使其对社区有用。仅当其成为共同努力并且社区认为这是公平时,它才会有用。我们正在与所有利益相关者联系以就此进行合作。
与此同时,Anysacle 也在邀请各位 API 提供商共同参于排行版的「修正」:
对于此事,你怎么看?
DeepMind CEO表示:AI可能获得自我意识
尽管有很多聪明人认为人工智能不会拥有自我意识,但DeepMind的CEODemisHassabis在接受采访时表态,认为人工智能可能会获得自我意识。这是又一名机器学习研究员表示AI会获得自我意识的现象。DeepMind的CEODemisHassabis在接受采访时承认,AI可能朝着获得自我意识的方向发展。站长网2023-04-18 18:18:33000000后耶鲁博士带队,瞄准消费级人形机器人,半年研发,即将百台量产
超乎年龄的成熟,是不少人对杨丰瑜的第一印象。这位出生于2000年的年轻人,本科毕业于密歇根大学,目前是耶鲁大学的博士。在求学期间,他发表了世界上最大的视触觉数据集TouchandGo,并提出了世界首个融合触觉的预训练多模态大模型UniTouch。0000英特尔发布 AI 加速器 Gaudi 3 :预计明年推出 对标英伟达H200
在今日“让AI无处不在”的活动上,英特尔CEO帕特・基辛格(PatGelsinger)还首次向公众揭示了英特尔Gaudi3系列AI加速器,这是一款专为深度学习和大规模生成人工智能模型设计的工具,计划明年推出。据英特尔表示,新一代的Gaudi3AI加速器凭借出色的性能优势和极具竞争力的总体拥有成本及定价,有望在2024年占据更大的市场份额。站长网2023-12-15 09:22:100000ChatGPT 等生成式人工智能模型催生新工作岗位:审核 AI 输入和输出
站长之家(ChinaZ.com)10月13日消息:人工智能可能正在引发对人们工作保障的担忧,但新一波工作岗位正在涌现,这些岗位专注于审核下一代人工智能模型的输入和输出。自2022年11月以来,全球的商业领袖、职员和学者都一直担心生成式人工智能将扰乱大量专业岗位。站长网2023-10-13 09:11:570000辣椒越皱,辣度越高?真相在这里!
其实和人会衰老、面部产生皱纹一样,植物因为各种各样的原因,也会在表面产生褶皱。辣椒表面的褶皱便吸引了科学家们探索其中的奥秘。图库版权图片,不授权转载01辣椒表面褶皱的形成原因辣椒因为干燥产生褶皱是日常生活中常见的现象,但是如果要细细分析为什么会产生这样复杂的褶皱,并不是一件简单的事情。站长网2023-05-24 21:25:330000