谷歌搜索引入语法检查模型EdiT5 提高语法纠正准确性
💡 划重点:
- Google研究团队开发了一种高效的语法纠正模型,基于EdiT5架构,使用户能够在Google搜索中检查查询的语法。
- 这一模型采用了新颖的文本编辑方法,降低了解码延迟,提高了纠正的准确性,同时结合了大型语言模型(LLMs)的优点。
Google的研究团队最近开发了一种高效的语法检查模型,它将语法检查引入了Google搜索,为用户提供了一种在查询语法方面的辅助工具。这一模型基于EdiT5架构,通过新颖的文本编辑方法,极大地减少了解码延迟,提高了语法纠正的准确性。
传统的语法错误纠正(GEC)方法通常将其视为翻译问题,并使用自回归变换器模型逐个标记解码响应,条件是以前生成的标记。然而,这种方法的效率较低,因为解码不能并行进行。文章指出,通常只需要对输入文本进行少量修改,因此可以将GEC视为文本编辑问题,仅使用自回归解码器生成修改,从而显著降低GEC模型的延迟。
EdiT5模型基于T5变换器编码器-解码器架构,采用了一些关键的修改。它使用编码器来确定要保留或删除的输入标记,这些保留的标记构成了初步的输出。此后,解码器输出缺失的标记,并使用指针机制指示每个新标记的放置位置,以生成语法正确的输出。与传统的GEC方法相比,解码器只运行少量步骤,从而提高了效率。
为了降低解码器延迟,研究团队将解码器减少到单层,并通过增加编码器的大小来进行补偿。实验结果表明,EdiT5大型模型相比具有248M参数的T5基础模型,提供了9倍的速度提升,同时提高了修正的准确性。EdiT5模型的平均延迟仅为4.1毫秒。
此外,研究团队还介绍了如何使用大型语言模型(LLMs)的优点,结合EdiT5的低延迟,通过硬蒸馏技术训练了教师LLM,用于生成学生EdiT5模型的训练数据。他们还详细解释了如何生成更干净和一致的训练数据,并通过自训练和迭代改进等技术提高了数据的质量。
他们开发了两种基于EdiT5的模型,分别用于语法错误校正和语法分类。在使用语法检查功能时,查询首先经过校正模型,然后通过分类模型检查输出是否确实正确。这种分离的分类模型有助于更容易在精度和召回率之间进行权衡,并减少了为模糊或无意义的查询提供错误或混乱校正的风险。
谷歌的这一语法检查功能基于EdiT5模型架构,为用户提供了一种检查其查询语法的有效方式,进一步提升了Google搜索的用户体验。
GPT-4批评GPT-4实现「自我提升」!OpenAI前超级对齐团队又一力作被公开
今天,OpenAI悄悄在博客上发布了一篇新论文——CriticGPT,而这也是前任超级对齐团队的「遗作」之一。CriticGPT同样基于GPT-4训练,但目的却是用来指正GPT-4的输出错误,实现「自我批评」。OpenAI最近的拖延症状逐渐严重,不仅GPT-5遥遥无期,前几天还宣布GPG-4o的语音功能将推迟一个月发布。站长网2024-06-29 10:18:530000vivo X100 Ultra 官宣 5 月 13 日发布
vivo公司通过其官方微博正式揭晓,将于5月13日晚上7点盛大举办“影像新蓝图暨X系列新品发布会”。据官方预告,此次发布会将有可能亮相两款备受瞩目的新品——vivoX100s和X100Ultra。站长网2024-05-06 10:54:550000商汤发布日日新5.0大模型 综合能力全面对标GPT-4
4月23日下午,商汤科技发布了一项重磅更新——全新升级的日日新SenseNova5.0大模型。这款大模型采用了先进的MOE混合专家架构,经过超过10TBtokens的训练,其推理上下文窗口达到了惊人的200K,展现出了与GPT-4Turbo全面对标的能力。站长网2024-04-23 17:48:570000错误率降低44%!纽约大学最新「人脸生成」可让年龄随意变化:从少年到老年全覆盖
【新智元导读】只需几张图像,用文本即可生成任意年龄图像,用户反馈准确率达80%!当下的「人脸识别系统」抗衰老能力非常弱,人物面部老化会显著降低识别性能,隔一段时间就需要更换人脸数据。提升人脸识别系统的鲁棒性需要收集个体老化的高质量数据,不过近几年发布的数据集规模通常较小,年限也不够长(如5年左右),或是在姿态、照明、背景等方面有较大变化,没有专注于人脸数据。站长网2023-09-06 18:21:500000