scRNA分析 | 定制 美化FeaturePlot 图,你需要的都在这
单细胞常见的可视化方式有DimPlot,FeaturePlot ,DotPlot ,VlnPlot 和 DoHeatmap几种 ,Seurat中均可以很简单的实现,但是文献中的图大多会精美很多。
之前 跟SCI学umap图| ggplot2 绘制umap图,坐标位置 ,颜色 ,大小还不是你说了算 介绍过DimPlot的一些调整方法。
本文介绍FeaturePlot的美化方式,包含以下几个方面 :
(1)调整点的颜色 ,大小
(2)展示基因共表达情况(点图,密度图)
(3)优化Seurat分组展示
(4)ggplot2修改theme ,lengend等
(5)批量绘制
一 载入R包,数据
仍然使用之前注释过的sce.anno.RData数据 ,后台回复 anno 即可获取
library(Seurat)library(tidyverse)library(scCustomize) # 需要Seurat版本4.3.0library(viridis)library(RColorBrewer)library(gridExtra)
load("sce.anno.RData")head(sce2,2)
这里额外安装scCustomize包,该R包对上面提到的Seurat 常用绘图函数进行了一些优化,但是需要Seurat版本4.3.0 以上。
二 FeaturePlot 相关
1,调整FeaturePlot颜色,大小
(1)Seurat 修改
有以下几种方式,可以使用FeaturePlot 内置的cols参数进行修改(p2 , p3),也可以使用ggplot2的方式 添加scale 进行修改(p4)
p1 <- FeaturePlot(object = sce2, features = "CD3D")
p2 <- FeaturePlot(sce2, "CD3D", cols = c("#F0F921FF", "#7301A8FF"))
p3 <- FeaturePlot(sce2, "CD3D", cols = brewer.pal(10, name = "RdBu"))
p4 <- FeaturePlot(object = sce2, features = "CD3D") scale_colour_gradientn(colours = rev(brewer.pal(n = 10, name = "RdBu")))
注意左下p3 ,legend是有问题的,会随col参数中brewer.pal(10, name = "RdBu")中的10的数值而变动。
修改大小的话很简单,直接调整 pt.size = 1 即可,此处不做演示。
(2)scCustomize 修改
p11 <- FeaturePlot_scCustom(seurat_object = sce2, features = "CD3D")
p22 <- FeaturePlot_scCustom(seurat_object = sce2, features = "CD3D", colors_use = brewer.pal(11, name = "RdBu"),order = T)
p11 p22
这里cols参数是没有问题的。
2 ,多基因共“表达”
单个基因就按照上面的方法直接绘制即可,如果想同时显示2个基因呢?
(1)Seurat 中提供了 blend = TRUE 函数,来可视化两个基因的共表达情况
FeaturePlot(sce2, features = c("MS4A1", "CD79A"), blend = TRUE)
注意blend = TRUE函数只能适用于2个基因,多个基因会报错 。
如果想实现多个基因的话,将目标基因和UMAP 的坐标提取出来使用ggplot2绘制即可 或者 使用scCustomize 包中的多基因联合密度图 ,如下。
(2)scCustomize 多基因联合密度图
密度图是通过Nebulosa包实现的,因此需要先安装Nebulosa 包 。然后用Plot_Density_Joint_Only()函数即可以同时绘制多个基因的联合密度图 ,可以不限于2个基因 。
BiocManager::install("Nebulosa")#单基因p000 <- Plot_Density_Custom(seurat_object = sce2, features = "CD3D")#双基因p111 <- Plot_Density_Joint_Only(seurat_object = sce2,
features = c("CD3D", "CD3E"))#多基因p222 <- Plot_Density_Joint_Only(seurat_object = sce2,
features = c("CD3D", "CD3E","CD79A"),
custom_palette = BlueAndRed())p000 p111 p222
可以通过custom_palette 函数调整颜色,选择较少 。
除了展示共表达外,还可展示目标celltype的几个marker来辅助细胞类型鉴定。
3 , 分组相关
很多时候会需要分样本/分组展示重点基因来进行表达的比较,
(1)Seurat有 split.by 函数 ,虽然可以设置ncol,但是没有效果,如图所示,
sce2sub <- subset(sce2 ,group == "PT")FeaturePlot(sce2sub, "CD3D", cols = brewer.pal(11, name = "RdBu"),
pt.size = 1,
split.by = "sample" ,ncol = 4)
(2)scCustomize 中FeaturePlot_scCustom函数 ,算是修正了这个小bug
FeaturePlot_scCustom(seurat_object = sce2, features = "CD3D", split.by = "orig.ident",
num_columns = 4)
4 ,ggplot2 修改theme / legend 相关
类似前面使用ggplot2的scale修改颜色,当然也可以修改theme等一系列
FeaturePlot(object = sce2, features = "CD3D",pt.size = 1,order = T) scale_colour_gradientn(colours = rev(brewer.pal(n = 10, name = "RdBu"))) DarkTheme() theme(text=element_text(size=14)) theme(text=element_text(face = "bold")) theme(legend.text=element_text(size=8))
此处简单的示例,更多的参考ggplot2 | 关于标题,坐标轴和图例的细节修改,你可能想了解 , ggplot2|theme主题设置,详解绘图优化-“精雕细琢” ,和ggplot2 |legend参数设置,图形精雕细琢
5 批量绘制
当有多个基因需要绘制时候,需要批量绘制 。
(1)features 可以接受向量,因此可以直接完成
marker_sign <- c("CD3E", 'CD3D', 'EPCAM', 'CD4', 'CD8A','SPP1', 'CD19', 'COL1A1', 'IGLC1')FeaturePlot(sce2,features = marker_sign)
(2)grid.arrange 方式绘制
grid.arrange接受的是list ,可以通过 layout_matrix 调整布局 。当然也可以最开始调整好基因在向量中的顺序,Seurat的结果是一样的 。
intersect_tls <- intersect(marker_sign,rownames(sce2)) plot_list <- lapply(intersect_tls,function(x){ plot_list <- FeaturePlot(sce2,
features = x) })#设置布局lay <- rbind(c(1,2,3),
c(4,5,6),
c(7,8,9))
grid.arrange(grobs = plot_list, layout_matrix = lay)
因为单细胞的FeaturePlot的都是样的,看不出来grid.arrange的优势,后面会介绍空转中使用该函数通过布局 和 选择展示的图片 来绘制CNS级别的主图。
◆ ◆ ◆ ◆ ◆
精心整理(含图PLUS版)|R语言生信分析,可视化(R统计,ggplot2绘图,生信图形可视化汇总)
RNAseq纯生信挖掘思路分享?不,主要是送你代码!(建议收藏)
使用ps 给图像加阴影的方法及案例?
使用Photoshop给图像加阴影的方法:打开你想要加阴影的图像。选择图层,然后点击“图层样式”按钮。在弹出的菜单中选择“投影”选项。调整阴影的大小、颜色、位置和透明度等参数,直到你满意为止。点击“确定”按钮保存更改。案例:为一张照片添加阴影效果打开照片并创建一个新的图层。选择“画笔工具”,选择黑色颜色。用画笔在新图层上绘制一个阴影形状,以模拟光源的位置和方向。站长网2023-07-27 13:25:520001Linux系统中dd命令详解
dd命令是一个Linux系统中的磁盘复制命令(块设备复制),与cp命令不同,cp是一个文件一个文件地复制,dd是一块一块地复制。它可以将指定的输入文件复制到指定的输出文件中,或者从输入文件中抽取一部分数据并输出到输出文件中。dd命令的常用参数及用法如下:1.bs参数0001三分钟快速学会各种 ChatGPT 技巧 :一页纸编写指南
最近,在学习和整理AI相关的资料,整理了他们之间相似的一些模式,发现大部分场景可以用一页纸来介绍:一页纸总览高清原清,可以上GitHub:https://github.com/phodal/prompt-patterns指令模板站长网2023-04-20 13:50:190000空间转录组|数据读入,标准数据形式外,还有哪些"天残地缺"可以读取
空间转录组测序可以同时获得细胞的空间位置信息和基因表达数据,虽然囿于当前单个spot的精度问题,但是在组织细胞功能,肿瘤生物学、发育过程等需要空间位置的研究领域仍然可以提供很多非常有价值的东西。本节会在spaceranger处理fastq,Seurat处理标准数据(h5spatial文件夹)外,额外提供以下几种情况如何处理站长网2023-07-29 12:31:310003如何使用图案生成器的方法?
使用图案生成器的具体步骤可能因为不同的图案生成器而略有不同,但是大致流程如下:选择一个合适的图案生成器。可以在互联网上搜索相关的图案生成器,也可以使用自己的设计软件(如Photoshop、Illustrator等)中的图案生成器工具。打开图案生成器并选择一个基础图案或模板。有些图案生成器会提供默认的基础图案或模板,有些则需要使用者自己上传或选择。站长网2023-07-27 11:56:090000