即插即用,完美兼容:SD社区的图生视频插件I2V-Adapter来了
图像到视频生成(I2V)任务旨在将静态图像转化为动态视频,这是计算机视觉领域的一大挑战。其难点在于从单张图像中提取并生成时间维度的动态信息,同时确保图像内容的真实性和视觉上的连贯性。大多数现有的 I2V 方法依赖于复杂的模型架构和大量的训练数据来实现这一目标。
近期,由快手主导的一项新研究成果《I2V-Adapter: A General Image-to-Video Adapter for Video Diffusion Models》发布,该研究引入了一个创新的图像到视频转换方法,提出了一种轻量级适配器模块,即 I2V-Adapter,它能够在不需要改变现有文本到视频生成(T2V)模型原始结构和预训练参数的情况下,将静态图像转换成动态视频。
论文地址:https://arxiv.org/pdf/2312.16693.pdf
项目主页:https://i2v-adapter.github.io/index.html
代码地址:https://github.com/I2V-Adapter/I2V-Adapter-repo
相比于现有方法,I2V-Adapter 大幅减少了可训练参数(最低可达22M,为主流方案例如 Stable Video Diffusion [1] 的1%),同时具备与 Stable Diffusion [2] 社区开发的定制化 T2I 模型(DreamBooth [3]、Lora [4])与控制工具(ControlNet [5])的兼容性。通过实验,研究者证明了 I2V-Adapter 在生成高质量视频内容方面的有效性,为 I2V 领域的创意应用开辟了新的可能性。
方法介绍
Temporal modeling with Stable Diffusion
相较于图像生成,视频生成的独特挑战在于建模视频帧间的时序连贯性。现有大多数方案都基于预训练的 T2I 模型(例如 Stable Diffusion 和 SDXL [6])加入时序模块对视频中的时序信息进行建模。受到 AnimateDiff [7] 的启发,这是一个最初为定制化 T2V 任务而设计的模型,它通过引入与 T2I 模型解耦的时序模块建模了时序信息并且保留了原始 T2I 模型的能力,能够结合定制化 T2I 模型生成流畅的视频。于是,研究者相信预训练时序模块可以看作是通用时序表征并能够应用于其他视频生成场景,例如 I2V 生成,且无需任何微调。因此,研究者直接利用预训练 AnimateDiff 的时序模块并保持其参数固定。
Adapter for attention layers
I2V 任务的另一难点在于保持输入图像的 ID 信息,现有方案大多使用一个预训练的图像编码器对输入图像进行编码,并将此编码后的特征通过 cross attention 注入至模型中引导去噪的过程;或在输入端将图像与 noised input 在 channel 维度拼接后一并输入给后续的网络。前者由于图像编码器难以捕获底层信息会导致生成视频的 ID 变化,而后者往往需要改变 T2I 模型的结构与参数,训练代价大且兼容性较差。
为了解决上述问题,研究者提出了 I2V-Adapter。具体来说,研究者将输入图像与 noised input 并行输入给网络,在模型的 spatial block 中,所有帧都会额外查询一次首帧信息,即 key,value 特征都来自于不加噪的首帧,输出结果与原始模型的 self attention 相加。此模块中的输出映射矩阵使用零初始化并且只训练输出映射矩阵与 query 映射矩阵。为了进一步加强模型对输入图像语义信息的理解,研究者引入了预训练的 content adapter(本文使用的是 IP-Adapter [8])注入图像的语义特征。
Frame Similarity Prior
为了进一步增强生成结果的稳定性,研究者提出了帧间相似性先验,用于在生成视频的稳定性和运动强度之间取得平衡。其关键假设是,在相对较低的高斯噪声水平上,带噪声的第一帧和带噪声的后续帧足够接近,如下图所示:
于是,研究者假设所有帧结构相似,并在加入一定量的高斯噪声后变得难以区分,因此可以把加噪后的输入图像作为后续帧的先验输入。为了排除高频信息的误导,研究者还使用了高斯模糊算子和随机掩码混合。具体来说,运算由下式给出:
实验结果
定量结果
本文计算了四种定量指标分别是 DoverVQA (美学评分)、CLIPTemp (首帧一致性)、FlowScore (运动幅度) 以及 WarppingError (运动误差) 用于评价生成视频的质量。表1显示 I2V-Adapter 得到了最高的美学评分,在首帧一致性上也超过了所有对比方案。此外,I2V-Adapter 生成的视频有着最大的运动幅度,并且相对较低的运动误差,表明此模型的能够生成更加动态的视频并且同时保持时序运动的准确性。
定性结果
Image Animation(左为输入,右为输出):
w/ Personalized T2Is(左为输入,右为输出):
w/ ControlNet(左为输入,右为输出):
总结
本文提出了 I2V-Adapter,一种即插即用的轻量级模块,用于图像到视频生成任务。该方法保留原始 T2V 模型的 spatial block 与 motion block 结构与参数固定,并行输入不加噪的第一帧与加噪的后续帧,通过注意力机制允许所有帧与无噪声的第一帧交互,从而产生时序连贯且与首帧一致的视频。研究者们通过定量与定性实验证明了该方法在 I2V 任务上的有效性。此外,其解耦设计使得该方案能够直接结合 DreamBooth、Lora 与 ControlNet 等模块,证明了该方案的兼容性,也促进了定制化与可控图像到视频生成的研究。
字节跳动捐赠500万元 支援琼粤等台风受灾地区灾后重建
据抖音集团官方消息,9月11日,北京字节跳动公益基金会宣布捐赠500万元人民币,联合中国教育发展基金会、中国乡村发展基金会等公益机构,支持海南、广东等受灾严重的地区开展道路清障、校园修缮等灾后恢复重建工作。字节跳动公益平台同步启动应急响应机制,上线相关救灾公益项目,开展专题筹款,增加捐赠入口,支援应急救灾工作。站长网2024-09-12 03:52:560000贵州茅台:i茅台累计注册用户超4000万
据贵州茅台公布数据显示,截至5月18日,i茅台的注册用户已超过4000万,并且累计销售额已经超过了230亿元。据了解,2022年5月19日,i茅台APP宣布正式上线。“i茅台”是贵州茅台官方推出的数字营销APP,支持消费者在线注册、实名认证、线上线下支付、取消退款、门店提货等。站长网2023-05-19 16:07:410001秒杀Instant3D!上交大推新框架Bootstrap3D 显著提升3D生成能力
上海交大和香港中文大学的研究团队推出了一个名为Bootstrap3D的新框架,它通过结合微调的3D感知多模态大模型,能够自动生成任意数量的高质量多视角图片数据,显著提升3D生成模型的能力。这个框架的合成数据集已经全面开源,供研究人员和开发者免费使用。关键特点:数据构建Pipeline:自动生成多视角图像数据和详细描述文本,是框架的核心创新之一。站长网2024-06-11 18:06:510000奥特曼老黄齐预测:AGI五年内降临,代替95%工作!但马斯克断言AGI将被电力卡脖子
【新智元导读】突然间,AGI已经成为了一个新的「5年内实现」的未来技术。从Altman到老黄,都在不同场合表示,达到人类智能水平的AI将很快到来。而技术路径和未来可能出现的能源短缺,可能是达到AGI过程中的最大变数。Claude3、Sora、Gemini1.5Pro的纷纷出现,以及或许今年内就会被放出的GPT-5,让所有人都不约而同地隐隐感觉:我们似乎离AGI似乎越来越近了。站长网2024-03-11 17:40:290000智谱AI以200亿人民币估值寻求新一轮融资 推出第三代基座模型ChatGLM3
要点:智谱AI正以200亿人民币估值,寻求新一轮融资,成为国产大模型创企中估值最高的公司之一。智谱AI推出第三代基座模型ChatGLM3,进行了全方位升级。智谱AI的投资方包括阿里、美团、腾讯、小米等大厂,进入B轮后期融资阶段。站长网2023-11-10 15:54:290000